Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency.

نویسندگان

  • Ma Luo
  • Qing Huo Liu
چکیده

The goal of this work is to analyze three-dimensional dispersive metallic photonic crystals (PCs) and to find a structure that can provide a bandgap and a high cutoff frequency. The determination of the band structure of a PC with dispersive materials is an expensive nonlinear eigenvalue problem; in this work we propose a rational-polynomial method to convert such a nonlinear eigenvalue problem into a linear eigenvalue problem. The spectral element method is extended to rapidly calculate the band structure of three-dimensional PCs consisting of realistic dispersive materials modeled by Drude and Drude-Lorentz models. Exponential convergence is observed in the numerical experiments. Numerical results show that, at the low frequency limit, metallic materials are similar to a perfect electric conductor, where the simulation results tend to be the same as perfect electric conductor PCs. Band structures of the scaffold structure and semi-woodpile structure metallic PCs are investigated. It is found that band structures of semi-woodpile PCs have a very high cutoff frequency as well as a bandgap between the lowest two bands and the higher bands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Properties of One-Dimensional Quaternary Photonic Crystals

In this paper, properties of reflection phase in one-dimensional quaternary photonic crystals combining dispersive meta-materials and positive index materials are investigated by transfer matrix method. Two omnidirectional band gaps are located in the band structure of considered structure. However, we limit our studies to the frequency range of the second wide band gap. We observe that the val...

متن کامل

Plasmonic Modulator for Three-Dimensional Chip-to-Chip Optical Interconnects

We present a surface-normal plasmonic modulator structure for three-dimensional (3-D) optical interconnects using subwavelength metallic photonic crystals. Optical transmission of the metallic slab was controlled by modulating the plasmonic bandgap of the metallic photonic crystal slab with a moderate index perturbation induced by thermo-optic effects. Our experimental results show that more th...

متن کامل

Three-dimensional metallic photonic crystals with optical bandgaps.

The fabrication of fully three-dimensional photonic crystals with a bandgap at optical wavelengths is demonstrated by way of direct femtosecond laser writing of an organic-inorganic hybrid material with metal-binding moieties, and selective silver coating using electroless plating. The crystals have 600-nm intralayer periodicity and sub-100 nm features, and they exhibit well-defined diffraction...

متن کامل

Photonic crystals of coated metallic spheres

It is shown that simple face-centered-cubic (fcc) structures of both metallic and coated metallic spheres are ideal candidates to achieve a tunable complete photonic bandgap (CPBG) for optical wavelengths using currently available experimental techniques. For coated microspheres with the coating width to plasma wavelength ratio lc/λp ≤ 10% and the coating and host refractive indices nc and nh, ...

متن کامل

Finite-difference time-domain modeling of dispersive-material photonic bandgap structures

Photonic bandgap (PBG) structures constructed from lossy, dispersive dielectric and metallic materials are characterized in terms of their reflection and transmission properties. Particular emphasis is given to PBG structures with defects. These PBG structures are modeled analytically with an ABCD matrix method for their single-frequency response. They also are modeled numerically with a finite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 27 8  شماره 

صفحات  -

تاریخ انتشار 2010